
J .  Fluid Me&. (1975), V O Z .  68, part 2, pp.  309-320 

Printed in Great Britain 
309 

Entrainment by a plume or jet at a density interface 

By W. D. BAINES 
Department of Mechanical Engineering, University of Toronto 

(Received 1 June 1970 and in revised form 25 February 1974) 

The rate of entrainment through the end of a plume or jet which impinges on a 
density interface has been determined in the laboratory, where the interface was 
produced by layers of fresh and salt water and the plume by a salt-water source. 
Observations of the impingement area indicated that entrainment was confined 
to a region about the size of the plume cross-section. It was thus concluded that 
the entrainment flux into the plume must be a function of the local width, 
velocity and buoyancy difference, and these can be combined into a single para- 
meter, the Froude number. Measurements of the volume flux showed it to be 
proportional to the cube of the Froude number. The flux of buoyancy from the 
salt- to fresh-water volumes is consequently proportional to the Froude number. 
In  the second part of the study the density distribution in the initially fresh 
layer was derived and is verified by the experiments. This distribution has direct 
applications in the analysis of convective motions in the atmosphere and the 
ocean. 

1. Introduction 
There are many instances in nature where a plume or jet impinges on a density 

interface and does not penetrate it. The result is a termination of the forward 
motion of the turbulent fluid and a steady lateral spreading of the plume or jet 
fluid along the interface. One example is the plume from an industrial chimney 
rising underneath an atmospheric inversion on a very calm day. The pollutant 
in the plume provides a marker for the buoyant fluid and shows that the plume 
effectively ends at  the inversion with a curved cap. The pollutant stays below the 
inversion and slowly spreads radially along it. The plume motion up to the in- 
version can be analysed in terms of the bulk properties of the source, that is, 
the mass and buoyancy flux, by using equations of conservation and the entrain- 
ment assumption of G. I. Taylor. The radial spreading can be similarly analysed. 
However, the volume flux of lighter fluid entrained by the plume in the impinge- 
ment area has not been determined. The object of this experimental study is to 
measure it in terms of the properties of the plume or jet. 

A source of momentum No or of buoyancy F, is supposed to be introduced in 
a fluid layer of thickness H and density pao which is above a second fluid layer of 
density pz of very great depth. If turbulent stresses are assumed to dominate 
the flow in the plume, then the volume flux Q* entrained from the second layer 
by the plume is a function only of the three variables pz - pao, F, and H ,  which can 
be combined in a single parameter. Complications to this picture are introduced 
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by the experimental technique. The density interface was produced in a glass- 
sided tank by placing a layer of fresh water over a layer of salt water. A small 
pipe produced a jet of fresh water for the jet experiments and a jet of salt water 
for the plume experiments. Dye was introduced into the jet to observe the en- 
trainment process. With this technique it proved possible to measure &* and 
the density distribution with relative ease. The problem arose because the density 
of the initially fresh-water layer increased steadily as more salt water was intro- 
duced by the source and by the entrainment at the interface. The density dis- 
tribution pa across the fresh-water layer is therefore 8 function of both position 
and time. An analytical description of this distribution is contained in $ 4  of the 
paper along with experimental confirmation. 

2. Entrainment at the interface 
On leaving the source the plume expanded linearlylike that from a point source. 

This is evident on figure 1 (a) (plate I), which shows the clearly defined but irregu- 
lar edge. The outside width measured on the photograph was found to be 2.8 b,  
where b is the nominal plume radius used by Baines & Turner (1  969). For its 
definition the velocity and density profiles are fitted with a Gaussian profile 
and b is the radius where the property has a value 0.368 of the maximum. As the 
plume impinged on the interface it was observed to entrain fluid through its end 
over a relatively small area. This entrained fluid mixed with the plume fluid within 
a smallvolume, i.e. about the volume of a large eddy. Upon impact with the inter- 
face the large rotating lumps of fluid, i.e. the largest eddies, stopped their forward 
motion and moved out along the interface. These can be seen clearly in figure 1 (a)  
but in figure 1 ( b )  are not evident. The rotational motion ceased before the eddy 
had moved laterally a distance of 2b and the spreading from this time onward 
was a laminar motion. A few striations in the dyed layer were the only evidence 
of the plume turbulence. 

When dye was not present in the plume a circular depression with a rough 
surface was observed in the heavy fluid immediately underneath the plume, that 
is, the stagnation pressure was balanced by a buoyant force. It was also observed 
that within an area of radius about 2b wisps of the heavier fluid were moving 
upwards into the spreading plume fluid. These appeared randomly over the 
surface and disappeared before a height b above the interface was reached. These 
observations suggested that the mechanism of entrainment is primarily by large 
eddies scooping heavy fluid between them as each intersects another roughly 
spherical eddy. An alternative explanation would be that viscous stresses between 
the eddies and the heavier fluid accelerate this heavier fluid and carry it up into 
the turbulent region. If this had been the case, viscosity would be a variable to be 
considered in the analysis. The experimental results indicated that the Reynolds 
number of the plume had no effect on the entrainment flux. It is thus concluded 
that the alternative explanation is not valid. 

It is concluded from these observations that the entrainment depends only on 
the characteristics of the plume or jet as it impinges and on the density difference 
across the interface. The set of local characteristics of the plume consists of its 
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centre-line velocity w,, radius b, and buoyancy A, but for a plume from a point 
source only two are independent; w1 and b, were chosen. The density difference 
across the interface is the other characteristic, and is naturally described by the 
buoyancy A, = g(p,--pl)/pao. It was found that the smaller this density dif- 
ference was the deeper was the depression at the end of the plume and the more 
intense appeared to be the entrainment process. The three parameters can be 
combined into one dimensionless parameter, the Froude number Fr = wl/(A2 bl)g, 
which can also be interpreted as the square root of the ratio between the momen- 
tum of the plume and buoyant force required to lift the fluid from the interface. 

The entrainment flux should be defined relative to the same plume charac- 
teristics, i.e. as a ratio Q*/wlbl. If the conjecture that the local characteristics 
determine the entrainment is correct this is a function only of the Froude number 
for both plumes and jets. 

3. Measurement of entrainment flux 
All the experiments were performed in a glass-walled tank 30 cm deep, 30 cm 

wide and 60cm long. The source fluid was introduced through a glass tube of 
inside diameter 5 mm in which a piece of wire mesh had been placed to promote 
transition from laminar to turbulent flow. It was found in every case that the 
virtual source was coincident with the end of the tube. The method used to 
locate the virtual source was that described by Baines & Turner (1969). At the 
start of the experiment the source was placed at the free surface in the centre of 
the tank. The salt water for the plume was a mixture which had been previously 
adjusted to a specified density and allowed to come to room temperature, i.e. 
the temperature of the tank fluid. The interface was produced by initially filling 
the tank with a thick layer of fresh water and then slowly introducing a salt- 
water layer beneath it. The fresh water had been allowed to stand for several 
hours after filling to dissipate the vorticity. The salt layer was usually dyed deep 
blue. 

A volume flowmeter in the line leading to the source enabled the discharge 
flux &, to be determined. The kinematic momentum flux M, from the source 
was found by multiplying Qo by the average velocity, and the buoyancy flux 
F, was found by multiplying Q, by A,, the buoyancy of the source fluid. There is a 
possibility of error in this method if the velocity across the outlet is not constant. 
This could not be measured but a nozzle was used as the outlet to ensure that this 
condition was approached. The volume flux Q* was determined by measuring the 
rate of change of the elevation of the interface. A pair of parallel scales was used 
to eliminate parallax. The elevation of the interface could always be accurately 
determined because of the difference between the colours and refractive indices 
of the two fluids. As noted above, the dimensionless representation of &* required 
its division by wlb,. These parameters were calculated using the equation for a 
point source in a stratified medium as presented by Baines & Turner (1969) 
but revised following the analysis in 5 4. It was found that these values and those 
calculated using the equations for a point soureelin a uniform environment 
always differed by very small amounts. It was, however, necessary to specify the 
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entrainment velocity relative to w, the centre-line velocity. For plumes, this was 
determined directly in the experiment. Asmall amount of dye was introduced from 
the source at the start of the experiment, and this formed a coloured front which 
moved upwards through the fresh-water layer. The velocity of this front could be 
used to define a as shown by Baines & Turner (1969). In  the thirty separate experi- 
ments it was found that CI varied from 0.084 to 0.100 with no discernible pattern. 
The mean value of 0.093 is the same as that found by Morton, Taylor & Turner 
(1956) but it is appreciably less than the value of 0-100 found by Baines & Turner 
in an experimental apparatus of about the same size. This value of 0-093 was 
used for all analyses because it represents the average. For the case in which the 
source fluid was fresh water, the reference velocity and radius were assumed t o  be 
those produced by a source of momentum in the uniform fluid with the entrain- 
ment constant a = 0.057, the value found by Albertson et al. (1950). 

The dimensionless entrainment flux is presented on figure 2 as a function of 
the Froude number. Symbols identify the values of the source discharge flux and 
buoyancy A, = g(p,-p,,)/pno and the depth of the fresh-water layer for each 
experiment. These and the density of the salt-water layer were varied over as 
large a range as possible. The results for both the plume and jet appear to follow 
the same curve, indicating that &* is indeed defined by the local characteristics 
of the turbulent flow. Following this deduction, it can be said that the entrain- 
ment is not affected by the motion within either the lighter or heavier fluids but 
is determined only by the characteristics of the turbulence within the plume or 
jet at  impingement. Another important property of the flow is the depth of pene- 
tration into the heavy fluid layer. This was barely perceptible a t  small Pr but for 
Fr > 2 the plume or jet penetrated deeply. The eddies within the plume were in 
contact with the heavier fluid for a much longer time, which may be significant 
in explaining the variation of the entrainment flux with Fr and why it differs 
from the relationship presented by Kato & Phillips (1969). They showed that if 
the mean energy of the turbulent flow is the potential energy required t o  lift the 
heavier fluid by the distance b, a proportionality between the entrainment flux 
and the square of the Froude number results. The results on figure 2 show a 
proportionality to the cube. This is exactly the same form as that found by 
Turner (1968), who used mechanical agitation within a fresh-water layer to 
produce turbulence. He measured the velocity of entrainment directly from the 
increase in the salt concentration within the initially fresh water. Results were 
presented in non-dimensional form but with arbitrary length and velocity scales. 
Thompson (1969, private communication) has measured the intensity u' and 
scale L of turbulence in the tank used by Turner and so has been able to assign 
exact values to the parameters w*/wl and u'/(LA,)t. An attempt has been made 
using Thompson's results to compare Turner's results with figure 2. This required 
the definition of the intensity and scale of turbulence for the plume or jet and the 
derivation of the entrainment velocity w* from the entrainment flux &*. No 
measurements of turbulence within plumes are available but the free jet is well 
documented. The results of Wygnanski & Fiedler (1969) show a unique variation 
for the range of jet development used in this experiment. However, turbulence 
in the jet is not isotropic so a choice must be made of the component of the 
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FIGURE 2. Entrainment volume flux for plumes and jets. ---, mean of data of Turner 
(1968) transformed on basis of turbulent velocity and scale; -, best-fit line with slope 
of 3. 
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intensity and the particular integral scale to be used. I n  determining the dashed 
line shown on figure 2 the mean of the three components of the intensity and the 
mean of the three integral scales were expressed as ratios to the maximum velocity 
w1 and the radius b,, respectively, from the Wygnanski & Fiedler data. Using these, 
the mean line through Turner's results was converted to w*/wl. This entrainment 
velocity was next converted to an entrainment flux by assuming that t'he entrain- 
ment at  the end of the plume occurs over a circle of radius 2b. The agreement 
between the line and the measured data on figure 2 must be considered fortuitous 
because both the area of entrainment and turbulence properties are known only 
to within an order of magnitude. Nevertheless, it is evident that there is a uni- 
versal form for the entrainment velocity in terms of the characteristics of either 
the turbulence or mean flow in the plume or jet. 

This variation of the entrainment flux with the cube of the Froude number is 
also evident in the data reported by Kato & Phillips (1969). The authors claim 
that the variation follows the square of the Froude number but careful examina- 
tion of the data, particularly a t  small Froude numbers, shows that the results are 
closer to the cube. Both Turner (1968) and Kato & Phillips (1969) found that the 
entrainment rate varies at  a rate less than that of the cube for large Froude 
numbers but this effect is not evident in data on figure 2. 

The Froude number of a plume impinging on an interface reaches a limiting 
value if the density of the plume as it strikes the interface is exactly equal to that 
of the heavy fluid. The momentum of the plume carries it through the interface, 
after which the plume fluid is surrounded by fluid of the same density, the flow 
hence being that of a jet. For this limiting condition the Froude number is 
defined in terms of w,, b, and A, = A, and reduces to 

which can be seen to depend only on a. This relation is easily verifiable by experi- 
ment because for Froude numbers less than Frmax the interface recedes from the 
source as time progresses and for Froude numbers greater than Frmax the inter- 
face approaches the source. It was found from experiment that the limiting 
value was 3.80, compared with 3.66 from (3.1). The agreement of the measured 
and theoretical value is satisfactory considering the uncertainty in the value of a. 

Frmax = (5/4a):, (3.1) 

Buoyancy JEux across the interface 

The buoyancy flux F* is found to be the most important parameter in the deter- 
mination of the density distribution in the fresh-water layer, as will be noted in 
5 4. By definition 

and so is determined from the interface motion. It can also be determined from 
the rate of increase of density a t  a point in the fresh-water layer. This rate is 
equal to Fo + F* divided by the volume of fresh water. Good agreement between 
the two methods was found in all of the experiments. 

Figure 3 is a plot of F*/Fo as a function of Fr for the experiments in which buoy- 
ant source fluid was used. The points are scattered about a straight line derived 
from the best-fit line on figure 2. If this is taken as 

F" = A2Q", (3.2) 

Q*/w2,b2, = constant x [wl/(b1A2):I3 (3.3) 
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FIGURE 3. Entrainment buoyancy flux for plumes. Symbols as in figure 2. 

and (3.3) is multiplied by A,/lPo then 

which is a linear relationship because the term in square brackets is the square 
of the Froude number of the plume multiplied by a constant. The analysis of 
Morton et al. (1956) shows that this is constant for all plumes in the region distant 
from the source. In this set of experiments the plume strikes the interface in this 
region so the representations on figures 2 and 3 are identical. Such would not be 
the case if the interface were close to the source. 

The vertical scale on figure 3 is presented in two forms. On the left-hand side 
P*/Fo, the ratio derived above by considering the entrainment process, is 
shown. On the right the corresponding values of F*/(F* + Fo) = B are given. This 
ratio of the entrained flux to the total flux entering the environment is significant 
in the determination of the density distribution in the environment, as shown in 
the following section. 

The buoyancy flux entrained by a jet must be compared with M t / H 2  because 
Po is obviously zero in this case. In  terms of this parameter the best-fit line on 
P----.. n I- 11gul-t: L 1s -- F*H2 - constant x [TI w3 H2b, (a) 

Mt (b,A2)+ ’ 
(3.5) 
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which is also a linear relationship because the term in square brackets is constant 
for a jet in the region distant from the source. This was verified by plotting the data 
from figure 2 for jets using these parameters. The result was agreement similar to 
that in figure 3. 

4. Density distribution in the confined region 
If the fresh-water layer is of limited horizontal extent, as it must be in the 

laboratory, a recirculation flow pattern is developed within it, The plume fluid, 
after impinging, spreads laterally along the interface until it reaches the edges 
of the tank. It then moves vertically upwards towards the source. The plume 
entrains fluid from all levels of this region and induces a pattern of closed stream- 
lines and a density distribution which is not linear and which changes steadily 
with time. The solution for this density distribution can be obtained by extending 
the analysis of Baines & Turner (1969), which was for a confined region with 
impermeable walls. 

Basic equations 

It is assumed tha t  the density and velocity profiles across the plume are similar 
at all elevations z below the virtual source and these profiles are of Gaussian form. 
The equations of conservation of volume, momentum and density deficiency 
integrated over the plane z = constant reduce to the following set derived by 
Morton et aZ. (1956) provided that the velocities in the plume are much larger 
t’hen those in the environment: 

d(b2w)ldz = 2abw, (4 . la)  

d(&b2w2)/dz = P A ,  (4 . lb)  

d(gb%A)/dz = b2W aAa/&. ( 4 . 1 ~ )  

Here a is the entrainment constant, chosen to make the rate of entrainment of 
volume at  any height equal to Bnrbctw. The density gradient in the environment 
influences only the last equation. It is defined by 

and is determined by the conservation equation for a scalar property, 

aa,/at = - w aa,/az, ( 4 4  

-nR2w = nb2w, (4.3) 

a’nd the conservation equation for the mass flux of the transporting fluid, 

where w is the vertical velocity in the environment and it is assumed that R2 + b2, 
where nR2 is the cross-sectional area of the tank. 

Boundary conditions 
The boundary conditions to be imposed depend on the problem to be solved 
and for one of these entrained fluid is not a factor. The motion of the first front 
analysed by Baines Lk Turner (1969) depends only on the entrainment of 



Entrainment at a density interface 317 

homogeneous fluid by a plume. In effect, the staining of the first fluid elements 
released by the source produces a rising front which is independent of any 
mixing process existing beyond the front. It thus provided the scheme whereby 
the entrainment constant a discussed in 3 3 was determined. 

Asymptotic solution 

As the experiment progresses the density distribution approaches an asymp- 
totic condition in which density is changing at  the same rate at  every point. It 
has been shown that this condition is approached rather quickly. For this asymp- 
totic case the balance of buoyancy flux gives 

nR2H aA,/at = Fo + P" = PI, (4 .4 )  

which defines PI, the total influx to the confined region. Inserting this equation in 
(4.2) produces a relation which upon inclusion in (4.1 c) allows it to be integrated 
directly, yielding 

w b 2 A z - F  :I( l - - - - F "  ;irl ) ?  (4.5) 

in which the boundary condition on the plume at  the virtual source, 

wb2A = (2/7r)F0 at z = 0, 

has been used to evaluate the constant of integration. 
At this point it is convenient to convert to dimensionless variables. If the 

following substitutions are introduced the differential equations are reduced to 
the simplest form: 

(4.6a) 

A, = &~-QF"fa-*H-8(f,(6) - 7 ) ,  (4.6b) 

b = 2aHh(6), (4 .6~ )  

u = d P k  a-#H-)g( a), (4 .6d )  

7 = 4 d a * ( H / R ) 2  FfH-tt ,  (4.6e) 

A = &T-'@ a-*H-gf (a), 

6 = 2 / H .  
That is, (4.1) become 

d(gh2)/dS = gh, 

d ( g W ) / d 6  = h2f, 
fgh2 = (1-6)-B. 

A further simplification is possible if the variables are changed to 

j = -gh2, k = gh (4.10),  (4.11) 

and (4.7) and (4 .8)  combined to give 

(4.12), (4.13) 

whose solutions must satisfy the boundary conditions for a point source, namely 
j = 0 and k = 0 at 6 = 0. Series solutions of (4.12) and (4.13) can be obtained 
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which converge rapidly over the whole range of integration 0 6 6 6 1.  The first 
five terms of the solutions for j and k are given by 

+ 0.00156 - 0.02178 - 
1-B (1-B)2  

6 

62 6 j = - 0.459888 (1 - B)* 1 - 0.1282 - - 

Ic = 0.76636% (1 - B ) )  1 - 0.2051 - - 

(4.14) 

+ 0-00436 - 0.04792 - 
1-B (1-B)' 

62 

(4.15) 

All the properties of the plume can be determined algebraically from these 
solutions but finding the density distribution requires the integration of (4.1 c). 
In  dimensionless form this distribution is 

] (4.16) 
63 - 0.00179 - - 0.00030- (1 - ~ ) 3  (1-B)4'" * 

The constant of integration C can be determined by setting the value of A, in 
(4.6b) at the interface 6 = 1 for t = 0. The density difference produced by the 
initial front is very small and can be set to zero without loss of accuracy. 

Experimental confirmation 
The density distribution in most of the experiments was measured by sampling 
at points in the initially fresh-water layer. Twenty-five ml of liquid were with- 
drawn and weighed on a sensitive balance. The density was expressed as a 
dimensionless ratio consistent with (4.6) after an intermediate calculation of the 
buoyancy A,. Results for one group of experiments are plotted on figure 4. 
The co-ordinates have been arranged to correspond to the experimental con- 
figuration: the vertical co-ordinate is the dimension less depth below the source and 
the horizontal co-ordinate the difference in buoyancy from that just above the 
interface. The solid line gives the solution for B = 0.3 from (4.16) and the plotted 
points are the measured values for a range of B near 0.3. There is scatter of the 
points about the theoretical solution but this is not sufficient to throw doubt on 
the good agreement. For comparison the solution for B = 0, an impermeable 
lower surface, is plotted as a dashed line on the same figure. The difference be- 
tween the two lines is much larger than the scatter of the points. This demon- 
strates that the presence of the interface produces a difference which should be 
considered in any physical problem. F* produces steeper density gradients. 

5. Discussion 
The entrainment through the end of the plume introduces more fluid into the 

plume and thus would dilute a pollutant within it. This is a further dilution to 
that produced by the lateral entrainment and its importance in a physical prob- 
lem depends on the relative size of the two fluxes. Consider two examples from 
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the atmosphere as illustrations. Both involve plumes of 6 m characteristic dia- 
meter at  ground level which pass through a stationary air layer 600 m in depth. 
Upon reaching the top of the layer the width will be of the order of 70 m and most 
of the volume flux 7rwlb; will have come from entrainment. At the top of the 
layer an inversion with a temperature decrease of 5 "C is assumed to exist. 

In  the first example the plume is produced by a patch of ground heated by 
solar radiation. A buoyancy flux F, = 90m4/s3 would be typical, leading to a 
Froude number at the interface of 0.06 and Q*/nwlb2, < 0.001. The interface 
is effectively impermeable to this plume. 

Consider a typical plume from a thermal generating station as a second 
example. A buoyancy flux Fo = 4400m4/s3 produces a Froude number of 2.4. 
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FIGURE 1. Plurnc of dyod fluid ( a )  imrnediatnly after striking intcrfaco and ( b )  2 s  later. 
Plume flux is 1 ml/s of salt solution, specific gravity 1.12. Heavier layer is salt solution, 
specific gravity 1.084, dyed blue. Froudc number = 0.55. 

BAINES (Facing p. 320) 
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From figure 2 this gives Q*/zrw,b2 1: 0-3. The flow of mixed fluid into the environ- 
ment is thus increased by 30 %, which means that the concentration of pollutant 
is reduced by 30 %. This would be a significant improvement in practice because 
these conditions of static warm surface layers are those with the greatest pollution 
dangers. 
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